Se CanadianSolar

SolBank

Commissioning Manual

V1.5 CSI Energy Storage Co., Ltd.

©2022 CSI all rights reserved. Contains confidential information. Without prior written consent from CSI or its licensors, do not modify, reproduce, or distribute.

This manual is verified to be accurate at the date of publication identified within Section 1.4 CSI reserves the right to make product and documentation modifications at any time.

The images provided in this manual are for demonstration purposes only. Details vary slightly according to product version and market region. CSI has the final interpretation right for all detailed designs of the product.

Copyright and other intellectual property rights contained in this manual belongs to CSI. Without prior written consent from CSI or its licensors, this manual cannot be modified, reproduced, or copied, in whole or in part. The following are trademarks or registered trademarks of CSI in China and other countries:

The use of the other trademarks in this manual, which belong to their respective owners, does not imply CSI's sponsorship or endorsement of their products or services. Any unauthorized use of any trademark contained in this manual or displayed on the product is strictly prohibited.

The information and recommendations set forth are made in good faith and believed to be accurate as of the date of preparation. CSI makes no warranty, expressed or implied, with respect to this information.

Please contact the CSI Technical Team at <u>supportAmerica@csisolar.com</u> for further information or to report inaccuracies or omissions in this manual.

Made in China ©2022 CSI all rights reserved.

Content

1	Preface	4
1.1	1 Document Purpose and Scope	4
1.2	2 Applicable Models	4
1.3	3 Reference Documents	4
1.4	4 Version Control	5
1.5	5 Document Safety Notices	5
1.6	6 Product Certification and Compliance	6
2	Acronyms and Abbreviations	7
3	Introduction	8
3.1	1 Acknowledgement	8
3.2	2 System Overview	8
3.3	3 System Specifications	10
4	Before commissioning	11
4.	1 Safety matters	11
4.2	2 Basic work	11
5	Static debugging	11
5.	1 Prepare for debugging jobs	12
5.2	2 Field installation confirmation	12
5.3	3 Battery string power cables in series	12
5.4	4 Battery string insulation and safety test	12
5.5	5 Power on the auxiliary power supply	13
5.6	6 Start the control system	15
5.7	7 SolBank cabin equipment function verification	23
Ann	ex 1:debug tool	24
Ann	ex 2 :Record Schedule	25
An	nnex 1:Appearance and Installation Inspection Form	25
An	nnex 2: Battery String Voltmeter	
An	nnex 3: Insulation Test Sheet	27
An	nnex 4: Input voltage values for auxiliary equipment	28
An	nnex 5: Auxiliary equipment operation status	29
An	nnex 6: Fire Fighting Joint Debugging	31
An	nnex 7: Joint Debugging Test Form	32

1 Preface

1.1 Document Purpose and Scope

The purpose of this document is to provide an overview of the processes and procedures required to operate the SolBank Energy Storage System (ESS) (1500V models only). The scope of this manual is limited to only those tasks applicable to operation of this product. Topics covered include, major component overview, operational safety hazards and precautions, modes of operation, pre- operation checklists, and startup and shutdown procedures.

This manual should be made available to all field personnel participating in the design, installation, operation, and maintenance of the DC SolBank energy storage system. A copy of this Manual should be available on-site at all times.

This manual is to be considered supplemental to project specific design and safety documentation. Please read and understand all aspects of this document prior to initiating SolBank operation.

Should any questions arise, please contact CSI support:

- By telephone at (xxx)xxx-xxxxxx
- By email at supportAmerica@csisolar.com

1.2 Applicable Models

This manual covers the following models only:

- CSI-SolBank-S-2967-2h-US
- CSI-SolBank-S-2967-4h-US
- CSI-SolBank-S-2225-1.5h-US
- CSI-SolBank-S-2967-2h-EU
- CSI-SolBank-S-2967-4h-EU
- CSI-SolBank-S-2225-1.5h-EU

1.3 Reference Documents

The SolBank User Manual exists as part of library of product specific documents. Please consult the following documents to ensure a comprehensive understanding of SolBank attributes.

- DC SolBank Installation Manual
- DC SolBank User Manual
- DC SolBank safety Manual
- DC SolBank Maintenance Manual
- DC SolBank Commissioning Manual

4 / 34

©2022 CSI all rights reserved. Contains confidential information. Without prior written consent from CSI or its licensors, do not modify, reproduce, or distribute.

1.4 Version Control

This is the initial release of the DC SolBank User Manual. As part of CSI's continuous improvement process, CSI reserves the right to make technology and document changes. Please contact CSI support to verify this manual reflects the most recent release or to report omissions or inaccuracies.

Version	Description	Date of Issuance
Commissioning_Manual_1.1	Initial publication date	
Commissioning_Manual_1.2	Format optimization	2022.11.10
Commissioning_Manual_1.3	Add picture caption	2023.8.1
Commissioning_Manual_1.4	Optimized content	2023.12.14
Commissioning_Manual_1.5	Section 5.6 adds instructions for IP address setting and total voltage test	2024.1.18

1.5 Document Safety Notices

Throughout this manual the below indicated labels are used to convey hazards associated with specific tasks and procedures. These safety notices do not represent all hazards present when performing a given task. Installers and operators of the SolBank should adhere to industry safety best practices; site specific Environmental, Health and Safety plans; and local safety requirements and regulations. *Only properly trained and qualified personnel should be permitted to complete the installation procedures identified in this manual.*

Labels	Explanation
UK CA	UKCA mark of conformity.
CE	CE mark of conformity.
	Indicates a hazardous situation which, if not avoided, could result in death or serious injury. Indicators are not used for property damage hazards unless personal injury risk appropriate to this level is also involved.
	Label the product as inflammable and explosive, and do not involve open flame.
Â	Electrical hazard sign, non-professional personnel do not approach. Professional personnel are required to perform maintenance and operation.
X	Do not discard randomly
	Recycling equipment

5 / 34

©2022 CSI all rights reserved. Contains confidential information. Without prior written consent from CSI or its licensors, do not modify, reproduce, or distribute.

1.6 Product Certification and Compliance

The SolBank is compliant with the standards, regulations, and requirements identified in Table 1.

Table 1: SolBank Standard and Compliance

Standard and Compliance						
System	 NEC – National Electrical Code® IEC 60529 – Degrees of protection provided by enclosure UL 508 – Standard for Industrial Control Equipment UL 991 – Standard for Tests for Safety-Related Controls Employing Solid- State Devices. UL 1998 – Standard for Software in Programmable Components IEEE C84.1 – Standard Preferred Voltage Ratings for Alternating- Current Electrical Systems IEEE 693 – Recommended Practice for Seismic Design of Substations IEEE 1584-2018 – Guide for Performing Arc- Flash Hazard Calculations Modular Energy Storage Architecture – Energy Storage System (MESA-ESS) Standard 					
Fire Protection and Safety	NFPA 855 – Installation of Energy Storage Systems NFPA 70E® – Standard for Electrical Safety in the Workplace® NFPA 72 – National Fire Alarm and Signaling Code NFPA 69® – Standard on Explosion Prevention Systems NFPA 68® – Standard on Explosion Protection by Deflagration Venting UL9540A – Standard for Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems					

2 Acronyms and Abbreviations

- AC Alternating Current
- AHJ Authority Having Jurisdiction
- BMS Battery Management System
- **BOL** Beginning of Life
- DC Direct Current
- SolBank Controller Local Energy Management System (Battery system)
- EOR Engineer of Record
- ESS Energy Storage System
- COG Center of Gravity
- HVAC Heating Ventilation Air-cooled HVAC
- IFC Issued for Construction
- LFP Lithium Iron Phosphate
- LOTO Lock-Out-Tag-Out
- NFPA National Fire Protection Association
- PCS Power Conversion System
- **PPE Personnel Protective Equipment**
- SPD Surge Protection Device
- **UPS Uninterruptible Power Supply**
- EPC Engineering, Procurement, and Construction contractor
- **CapEx Capital Expenditures**

©2022 CSI all rights reserved. Contains confidential information. Without prior written consent from CSI or its licensors, do not modify, reproduce, or distribute.

3 Introduction

3.1 Acknowledgement

Thank you for purchasing the containerized SolBank system supplied by CSI Energy Storage Co., Ltd. The SolBank is an advanced modular battery energy storage system incorporating industry leading capabilities enabled by cutting-edge technologies and innovative design. High energy density, liquid cooled battery and power electronics, extended service life, and advanced safety features are just a few of the attributes that set the SolBank apart from other ESS products.

The SolBank is fully factory integrated and tested at CSI's facility, arriving on site with battery racks populated and sub systems installed. This high level of pre-integration results in rapid installation, reduced EPC CapEx, and improved system performance and reliability.

3.2 System Overview

The SolBank System integrates all power electronics, controls, and safety features required to support the DC side of a battery energy storage system. An overview of the SolBank layout and key features is shown in Figure 1 and further described in Table 2.

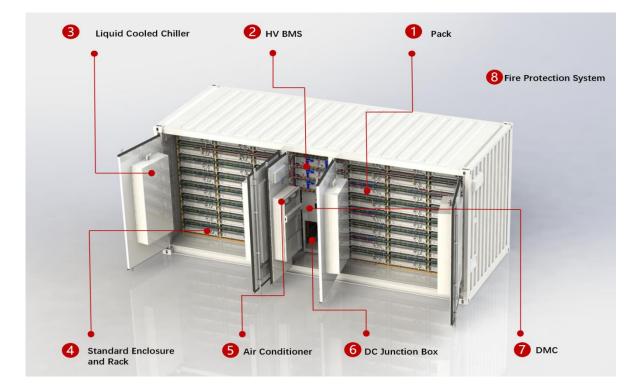


Figure 1: Layout and features of the SolBank

NO.	Name	Remarks
1	Pack	The SolBank contains 48/36 Lithium Iron Phosphate (LFP) battery packs, each consisting of 69 series wired battery cells.
2	BMS Box	The SolBank contains 8 or 6 BMS boxes. These are easily accessed for installation and maintenance within the central bay of the container. The BMS ensures optimal battery functionality and safety.
3	Liquid Cooled Chiller	The SolBank liquid-cooled chillers facilitates improved battery temperature management efficiency compares to traditional forced air systems. Each battery pack is liquid cooled, allowing for greater heat dissipation and uniform cell temperature management. During charge and discharge, cell temperature is maintained between 20°C - 35°C.
4	Standard Enclosure and Rack	All models of the SolBank enclosure utilize a standard IP-55 rated 20ft HC container and battery rack design allows for enhanced system modularity without increased production and equipment costs.
5	Air-cooled HVAC	The SolBank air-cooled HVAC is used to control the temperature of the DMC and DC bus combiners within the $25^{\circ}C(\pm 3)$ range, as well as the temperature and humidity in the SolBank enclosure.
6	DC bus combiner	The SolBank DC bus combiner contains all primary DC busbar, fusing, Surge Protection Devices (SPD), disconnects, and power monitoring required to safely exchanged power between the SolBank and PCS.
7	DMC	The DMC cabinet houses all aux power distribution equipment including 2-hour backup UPS; System communication, control, and monitoring hardware include network switch, and Local EMS, and all required customer communication, signal, and aux power interfaces.
8	Fire Protection System	SolBank is equipped with heat and smoke detection for fire alarm system and equipped with combustible gas detection and air ventilation for explosion prevention.

Table 2: Key System Features

3.3 System Specifications

The SolBank system has two models, as shown in Table 3 below. Each model has varying Crate, power, and energy characteristics. Battery string size, nominal voltages, form factor, and physical dimensions remain consistent across all models.

SYSTEM MODEL NUMBER	CSI-SolBank-	CSI-SolBank-	CSI-SolBank-				
	S-2967-4h	S-2967-2h 2-hour	S-2225-1.5h				
Discharge Duration	4-hour	1.5-hour					
Charge/Discharge C-rate	0.25P	0.5P	0.67P				
BOL Cell Energy (kWh)	2.967	2.967	2.225				
Usable Energy (kWh)	2800	2750	1.95				
Voltage Range (VDC)		1159.2~1490.4	Γ				
Recommended Discharge Power (kW)	700	1375	1300				
# of LFP Battery Rack	1P414S	1P414S	1P414S				
# of BMS boxes		8	6				
	Table 4: Additional Spe						
SYSTEM MODEL NUMBER	CSI-SolBank-	CSI-SolBank-	CSI-SolBank-				
	S-2967-4h	S-2967-2h	S-2225-1.5h				
Cell Chemistry		LFP					
Rated Capacity (Cell)		280Ah					
Rated Voltage (Cell)		3.2V					
Ingress Protection (Pack)		IP67					
Rack type	1P414S						
Power Rating	0.7MW	1.375MW	1.3MW				
Rated Capacity (Nominal)	8*280Ah	8*280Ah	6*280Ah				
Rated Voltage (Nominal)	1324.8V						
Enclosure Energy Capacity Rating (Nominal)	2.967MWh	2.967MWh 2.967MWh 2.225N					
Enclosure Usable Energy Capacity	2.8MWh	2.75MWh	1.95MWh				
Charging/Discharging Mode	0.25P	0.5P	0.67P				
Cooling concept	Liquid	l-cooled chillers + Air-coole	d HVAC				
Dimensions (LxWxH)		6058*2438*2896mm					
Auxiliary power interface	A	C400V/ 50Hz, 3 phase 5 w	ires				
Communication interfaces		Ethernet					
Communication protocols		Modbus TCP/IP					
Cycle Life (25 °C, 0.25C)	8	3000 @ 60%SOH. 100%D	OD				
Noise							
Environmental temperature	<75dB(A) -30°C to 55°C						
Environmental humidity	≤ 90% RH						
Ingress Protection/Environmental Rating		IP55					
Seismic Parameters		Zone 4					
Altitude	<2000m	(derating between 2000 m	~ 4000 m)				
Design Standards/Codes		, UL9540A, IEC62619, N					
	•						

4 Before commissioning

4.1 Safety matters

Lock-out-tag-out (LOTO) procedures should be implemented to prevent accidental energization of equipment.

All personnel operating the SolBank shall be properly trained and qualified. Personnel shall read and understand all manuals and project documentation and adhere to the requirements and direction within.

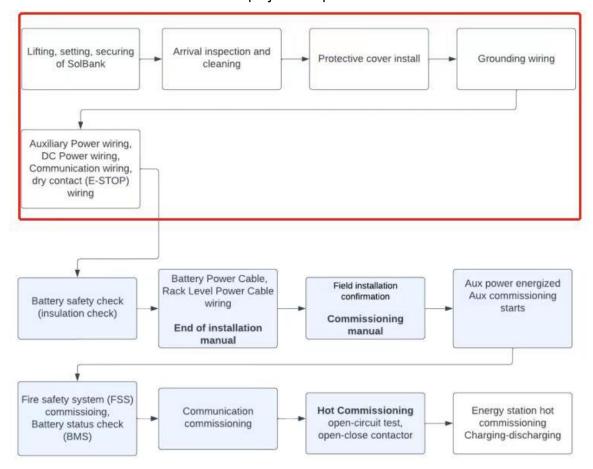
Do not initiate SolBank operation until system is fully commissioned and inspected by CSI field engineers, or until all required periodic maintenance is performed.

Do not modify or alter the SolBank without written permission from CSI

4.2 Basic work

Before commissioning, SolBank enclosure shall be installed and fixed properly. DC cables between SolBank and PCS shall be connected and tested. Communication harness between SolBank and PCS shall be connected, auxiliary power supply of SolBank has been connected, and conditions for power on shall be met.

Unpack the container and check that the battery packs fixing screws on the racks are not loose (the anti-loosening cable is not abnormal), and the enclosure should be without any wired odour. If any exception exists, mark it and check it furtherly.


5 Static debugging

The following section outlines the debugging process required to statically debug SolBank and integrate it into an ESS project site. Figure 2 below provides an overview of the SolBank debugging process. These steps must be completed sequentially by qualified personnel.

The following red selection represents the installation content.

In every step of debugging, security is the most important. Please be aware of all safety hazards described in this section and follow the project EHS plan.

5.1 Prepare for debugging

See Section 4 above of this manual.

5.2 Field installation confirmation

Check that the batteries wiring and harnessing are properly connected.

Attached Table 1: Appearance and Installation Inspection Form

5.3 Battery string in series cabling

When the battery cabin voltage check is normal, inform the construction personnel to connect the series lines in the battery string.

Operating Steps:

Check whether the power line buckle of the battery compartment is normal, and confirm it according to the "SOP Standard Operation". After checking the wiring between the packs, measure the total voltage between the strings with a multimeter, the total positive to ground, and the total negative voltage value to the ground, and record it as the following Annex 2: Battery String Voltmeter

5.4 Battery string insulation and safety test

💥 CanadianSolar

Use an insulation tester (1000V range) to test the insulation resistance of the positive pole of the battery string to ground and the negative pole to the battery pack case. The insulation resistance value shall not be less than $100M\Omega$.

Disconnect the PCS DC side switch and use an insulation tester (1000V range) to test the insulation resistance values of the DC output positive terminal of the busbar battery string to the box and the DC output negative terminal to ground. The insulation resistance value shall not be less than $100M\Omega$.

See Annex 3: Insulation Test Sheet

5.5 Power on the auxiliary power supply

While checking the battery pack voltage, ensure that the auxiliary power cable is normal and turn on the control switches of the air-cooled HVAC, liquid-cooled chillers, and UPS step by step from the main switch. To start the UPS, hold down the UPS startup button for 10 sec. Check whether the UPS output voltage is 220VAC.

Operating Steps:

- 1. Power on the circuit breaker of BMS boxes 1-8.
- 2. Power on the disconnector in the DC bus combiner.
- 3. Power on the circuit breakers marked QF1 (Aux power main switch) and QF2 (SPD). Before powering up, measure the voltage value at the input separately with a multimeter, note that the circuit will not be powered on until step 3 is completed.
- 4. Power on the circuit breaker marked QF3~QF6 (0.5P&0.67P: QF3~QF7). The thermal management system will turn on automatically. At the same time, pay attention to the coolant level and whether the chiller is operating normally.
- 5. Power on the circuit breaker QF7 (0.5P&0.67P: QF9).
- 6. Power on the circuit breaker QF8 (0.5P&0.67P: QF10).

- 7. Power on the circuit breaker QF9 (0.5P&0.67P: QF11).
- 8. Power on the circuit breaker QF10 (0.5P&0.67P: QF12).
- 9. Power on the circuit breaker QF11 (0.5P&0.67P: QF13).
- 10. Power on the circuit breaker QF12 (0.5P&0.67P: QF14).
- 11. Ensure that all SolBank subsystem are powered up and functioning properly. Ensure that communication between the on-site EMS and SolBank is enabled and functioning properly.
- 12. Press the BMS box contactor button "ON" to connect the SolBank DC bus to the DC terminal of the PCS.

See Annex 4: Input voltage values for auxiliary equipment.

💥 CanadianSolar

5.6 Start the control system

After the battery string safety test passes, turn on power supplies for devices such as BMS, fire control, water immersion sensor, and temperature and humidity sensor to check the operating status of each device. Record exceptions in a timely manner.

1. Fire protection system debugging

Operating Steps:

Activate the heat sensor with a heat gun or activate the smoke sensor with a smoke generator, the system triggers a first-level fire alarm, the alarm bell rings, and the system stops.

Activate the temperature detector with a heat gun and activate the smoke sensor with a smoke generator at the same time. The system triggers the secondary fire alarm, the alarm bell rings, the audible and visual alarm is activated, the system stops, and the butterfly valve opens.

Use combustible gas reagent to trigger the detector, when the combustible gas concentration \geq 25% LEL, the combustible gas detector is triggered, the system stops, and the ventilation system operates.

Annex 6: Fire debugging

- 2. The air-cooled HVAC and liquid-cooled chiller
- 3. The thermal management system includes air-cooled HVAC and chillers will automatically start after power-on. If any of them can't work properly, it needs to be isolated and checked.

After powering on the air-cooled HVAC, set different temperature values through the aircooled HVAC interface to verify the cooling and heating effects of the air conditioner,

After the water cooler is powered on, observe whether it operates normally through the interface of the water cooler, and at the same time observe whether the pump has abnormal noise, and pay attention to whether the liquid cooling pipe has liquid leakage and other problems

4. UPS

To start the UPS, hold down the UPS startup button for 10 sec. Check whether the UPS output voltage is 220VAC.

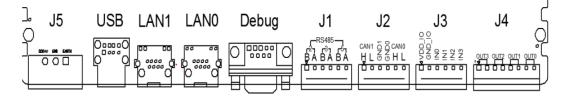
5. BMS

Check whether the status of the device is normal, whether the battery data is OK, and whether relevant information is uploaded

Annex 5: Operation Status of Auxiliary Equipment

💥 CanadianSolar

IP address settings:


Master Solbank IP setup:

Step 1: Click "Parameter" button on the top of the master Solbank BMS screen, then click the "HOST IP SET" button.

System	Bank	ES Info Hi	istory Paramete	erequipment	About
	6		Detter		
		Host IP set		Parameter	
		Host Parameter	8	Parameter	
			PCS Par	rameter	
		Server Parameter	Project	Paremeter	
		Server Parameter			
	SD:	error	24-01-18 15:16:28	Bank8	:Monitoring

Step 2: Choose net number according to LAN port number and click the corresponding data frame to set IP address, subnet mask and gateway.

The IP addresses of master and slave Solbank must be in the same network segment. The subnet mask is usually set to <u>xxxx (distribute via EMS)</u> and the gate way usually be <u>xxxx (distribute via EMS)</u>. The first three segments of the gateway address and the IP address are the same, and the last segment address is set to 1. (The IP address, subnet mask and gateway can be adjusted according to the actual network operating environment)

System	Bank	ES Info	History	Parameter	Equipment	About
		Net No.	•1			
		Host IP:		.68.10.44		
		Subnet I	Masi 255.2	255.255.0		
		Gateway		.68.10.1		
		MAC add	dr.:	7.70 ED AC B		
		OI	K Ca	ncel Re	eturn	
ana distance	SD	error	24-01	-18 15:15:13	Bank5:	Monitoring

Step 3: Click "OK" button after the parameter setting is completed, and the BMS will prompt whether it needs to be restarted, because there are other parameters to be set, so click "Cancel" button. Then click "Return" button.

Net No.	• 1 2		
Host IP:	192.168.10.44		
Subnet Mas	sl 255.255.255.0	×	
Whether the de	evice to restart parameter after cha		
MAC addr.:	Yes Cancel		
		-	B
OK	Cancel	Return	

System	Bank	ES Info	History	Parameter	Equipment About	1
		Heat ID a		Patton Pars	motor	
		Host IP se		Battery Para		
		Host Param	neter R	COM Port Par		
				PCS Param	neter	
	1			Project Par	motor	
		Server Param	leter	Project Par		
	SD	error	24-0	01-18 15:16:28	Bank8:Monitoring	

Step 4: Click on the "Server Parameter" button to set parameters of Master-Slave mode.

Step 5: Select the "Enable" option, then set the number of Solbanks, and set the slave IP address. Then click "OK" button after the parameter setting is completed. (Solbank 1 is master and doesn't need to set the IP address here.)

SolBank: 3 SolBank1IP: SolBank5IP: SolBank6IP: SolBank3IP: 192.168.10.45 SolBank3IP: 192.168.10.46 SolBank4IP: SolBank8IP:	Enable Enable	d			
SolBank2IP: 192.168.10.45 SolBank6IP: SolBank3IR: 192.168.10.46 SolBank7IP: SolBank4IP: SolBank8IP:	SolBank: 3	\supset			
SolBank3IR: 192.168.10.46 SolBank7IP: SolBank8IP: SolBank8IP:	SolBank1IP:		SolBan	k5IP:	
SolBank4IP: SolBank8IP:	SolBank2IP: 192.16	58.10.45	SolBar	k6IP:	
	SolBank3IR: 192.16	58.10.46	SolBar	k7IP:	
OK Cancel Return	SolBank4IP:		SolBar	ik8IP:	
		ОК	Cancel	Return	

Step 6: Click the "Equipment" button, and then click the "Reset" button. The settings take effect after the BMS is restarted.

System Bar	nk ES Info Histo	pry Parameter Equi	preent About
	Host Settings	Logout	
	Date and Time	Change Password	
	Module Upgrade		
		eset	
		24-01-18 15:18:42	Bank6:Monitoring

Slave Solbanks IP setup:

Step 1-3 is the same as above, and the IP address must be the same as the IP address set in Step 5 above.

Net	t No. • 1) 02		
Hos	st IP: 192	.168.10.45		
Sut	onet Masł 255	.255.255.0		
Gal	teway: 10.1	226.64.1		
MA	C addr.:	E7.7D:ED:AC:B	R	
(ОК	Cancel Re	turn	
Ç				

Step 4: Click on the "Server Parameter" button in Parameter Page as above Step 4.

Step 5: Unselect the "Enable" option and click "OK" button.

Enable Disenable		
SolBank:		
SolBank1IP:	SolBank5IP:	
SolBank2IP:	SolBank6IP:	
SolBank3IP:	SolBank7IP:	
SolBank4IP:	SolBank8IP:	
	K Cancel Return	
	24-01-18 15:17:08	Bank8:Monitoring

Step 6: Click the "Equipment" button, and then click the "Reset" button as Step 6 (same as Master SolBank) above. The settings take effect after the BMS is restarted.

Tips: If the settings are correct and the wiring is correct, the communication state between the master Solbank and the slave Solbanks can be reading through BCI Modbus.

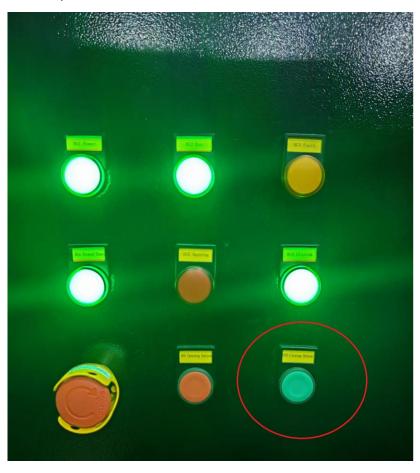
Se CanadianSolar

DC voltage test:

Step 1:

All auxiliary electrical switches are connected, and the 220VAC switch and disconnector on the BMS Box are all connected.

Step 2:


Check whether the BMS is faulty on the page of the Local Controller. If so, the fault needs to be dealt with.

ontactor:									
ontactor:	ON	Stack Cur./Vol.:	1095.6A	1283.60	Max/	Min Vol:	3.125V	3.101V	
tatus	Discharge	Cha./Dis.EQ:	2670.7kWh	237.4kWl	h Max/	Min Tmp:	34°C	29°C	
Power: 14	06.3KW	Once Cha/Dis EQ	: 0.0kWh	2697.0kV	h Max/	Min Cur:	137.3A	136.4A	
Res	et	Cum.Cha/Dis.EQ	: 13498.4kWh	13299.5k	wh Max	Vol/Tmp Dif:	0.024V	5.0°C	
U	Voltage	e Currer	SOC	MaxVol.	MinVol.	MaxTemp.	MinTemp.	SOC: Contactor+/-	1.1
Bank 1	1285.0	0V 137.3A	9.0%	8#3.125V	63#3.105V	3#34.0°C	82#30.0°C	ON/ON	
Bank 2	1284.2	20V 137.1A	9.0%	8#3.123V	205#3.104V	3#34.0°C	11#31.0°C	ON / ON	
Bank 3	1283.8	80V 137.2A	9.0%	77#3.124V	7#3.105V	31#34.0°C	109#30.0°C	ON/ON	
Bank 4	1284.	60V 136.6A	9.0%	215#3.123V	205#3.103V	87#34.0°C	23#30.0°C	ON/ON	
Bank 5	5 1283.	.60V 136.4A	9.0%	146#3.124V	201#3.105V	3#34.0°C	82#30.0°C	ON / ON	
Bank	V-Over	Cur-Over	BCM	сом	Vol-Over	Tem	p-Over	Diff T-Ove	r
Bank	V-Under	SOC-Under	Ins-U	nder	Vol-Under	Tem	o-Under	Diff V-Over	
(and the second	D:nor	mal	24-0	1-18 09:27:36		Bank2:Mon	itaring	

Step 3:

Manually close the DC disconnector QS1 of the DMC, and through Modbus TCP to simulate the BCI and send a power-on command.

Step 4:

Wait for the BMS to close the contactors and check whether all the contactors on the Local Controller page are closed.

Systen	n	Bank E	S Info	History	Paran	neter E	quipment	Abo	ut
Contactor:	ON	Stack Cur./Vol.:	1095.6A	1283.60	/ Max/	Min Vol:	3.125V	3.101V	
Status	Discharge	Cha./Dis.EQ:	2670.7kWh	237.4kW	h Max/I	Min Tmp:	34°C	29°C	
Power: 14	06.3KW	Once Cha/Dis EQ	: 0.0kWh	2697.0kV	Vh Max/	Min Cur:	137.3A	136.4A	
Res	et	Cum.Cha/Dis.EQ:	13498.4kWh	13299.5k	wh Max \	/ol/Tmp Dif:	0.024V	5.0°C	
ບ Bank 1	Voltage		SOC 9.0%	MaxVol. 8#3.125V	MinVol.	MaxTemp. 3#34.0°C	MinTemp. 82#30.0°C	Contactor ON / ON	DC: ·+/-
Bank 2	1284.2	20V 137.1A	9.0%	8#3.123V	205#3.104V	3#34.0°C	11#31.0°C	ON/ON	
Bank 3	1283.8	80V 137.2A	9.0%	77#3.124V	€7#3.105V	31#34.0°C	109#30.0°C	ON/ON	
Bank 4	1284.	60V 136.6A	9.0%	215#3.123V	205#3.103V	87#34.0°C	23#30.0°C	ON/ON	
Bank S	1283.	60V 136.4A	9.0%	146#3.124V	201#3.105V	3#34.0°C	82#30.0°C	ON/ON	-

System	n	Bank E	S Info	History	Parar	neter E	quipment	About
Contactor:	ON	Stack Cur./Vol.:	1093.7A	1283.40	Max/	Min Vol:	3.123V	3.100V
Status	Discharge	Cha./Dis.EQ:	2670.7kWh	237.4kW	h Max/	Min Tmp:	34°C	29°C
Power: 14	03.7KW	Once Cha/Dis EQ:	0.0kWh	2703.2kV	Wh Max/	Min Cur:	137.3A	136.3A
Res	et	Cum.Cha/Dis.EQ:	13498.4kWh	13305.7k	wh Max	Vol/Tmp Dif:	0.023V	5.0°C
Bank 6	Voltage		SOC 9.0%	MaxVol. 284#3.124V	MinVol.	MaxTemp. 3#34.0°C	MinTemp.	Contactor+/-
Bank 7	1284.4	0V 136.7A	9.0%	77#3.123V	201#3.100V	31#34.0°C	25#30.0°C	ON / ON
Bank 8	1284.7	0V 136.9A	9.0%	284#3.123V	341#3.102V	115#34.0°C	25#29.0°C	ON/ON
BankV	-Over	Cur-Over	BCM	сом	Vol-Over	Tem	p-Over	Diff T-Over
BankV	Under	SOC-Under	Ins-U	nder	Vol-Under	Tom	o-Under	Diff V-Over

Step 5:

A multimeter (1500VDC) is used to measure the total voltage of the DC busbar.

5.7 SolBank function verification

Artificial operation is used to simulate faults to test the normal protection function of all equipment in SolBank enclosure.

Annex 7: Joint Debugging Test Form

Annex 1: Debug Tool

S/N	Tools	Picture	Use
1	ZLGCAN	USBCAN-II	ZLGCAN tools provide connections between BESS and the real time monitoring system (computer). Flashing and configuring are both done by these tools.
2	Multimeter		1500VDC,Test on-off, Test voltage, trouble shooting.
3	DB9 connector		DB9 connector and rack connectors are used for connection between CAN tools and BESS.
4	Manual Charger		Used for charging/discharging and adjusting SOC of whole battery packs.
5	Insulation resistance tester		Insulation resistance test(2500V)
6	Infrared temperature gun		Used to test temperature
7	Others	/	 Computer Electrical Schematic Diagram Tool set with screwdriver. Insulating gloves

Revision 1.5

St CanadianSolar

Annex 2: Record Schedule

	Appearance and Installation Inspection Form							
S/N:	site specific number:	date:						
S/N	Debugging project	Debugging content	Inspection results					
1	Remove the protective packaging, inspect the appearance and structure for obvious wear, and ensure that all doors are in good condition							
2	Check if the bolts/screws are loose							
3	Check if the tilting device is functioning properly							
4	Check the internal system for signs of damage							
5	Check signs of leakage in the coolant distribution system							
6	Check damage to racks or other equipment, or transfer of internal safety items							

Annex 2: Battery String Voltmeter

		Battery String Voltm	neter		
	S/N:	Site specific number:		Date:	
S/N	Debugging project	Debugging content	Inspection results	Qualified or not	remarks
1	_	Battery string 1 voltage and positive and negative pole to ground voltage			
2		Battery string 2 voltage and positive and negative pole to ground voltage			
3		Battery string 3 voltage and positive and negative pole to ground voltage			
4	Battery string #	Battery string 4 voltage and positive and negative pole to ground voltage			
5	voltage measurement	Battery string 5 voltage and positive and negative pole to ground voltage			
6		Battery string 6 voltage and positive and negative pole to ground voltage			
7		Battery string 7 voltage and positive and negative pole to ground voltage			
8		Battery string 8 voltage and positive and negative pole to ground voltage			

<u>*</u>	CanadianSolar

Annex 3: Insulation Test Sheet

		Insulation Test	Sheet			
S/	′N:	Site specific number:		Date:		
S/N	Debugging project	Debugging content	Inspection results	Qualified or not	remarks	
1		Insulation between positive and negative poles of battery string 1 and ground				
2		Insulation between positive and negative poles of battery string 2 and ground				
3		Insulation between positive and negative poles of battery string 3 and ground				
4	Insulation measurement	Insulation between positive and negative poles of battery string 4 and ground				
5	of battery string #	Insulation between positive and negative poles of battery string 5 and ground				
6		Insulation between positive and negative poles of battery string 6 and ground				
7		Insulation between positive and negative poles of battery string 7 and ground				
8		Insulation between positive and negative poles of battery string 8 and ground				
9	DMC insulation	Primary line insulation (closed contactor)				
10	measurement	Secondary insulation (closed contactor)				

Annex 4: Input voltage values for auxiliary equipment (0.5P&0.67P) Input voltage values for auxiliary equipment (0.5P&0.67P)

S/N:	Site specific number:	Date	e:
Protector	Circuit Description	Voltage	remarks
QF1	Auxiliary power main switch	480 Vac(US) 400 Vac(EU)	
QF2	Lightning arrester switch	480 Vac(US) 400 Vac(EU)	
QF3	1 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)	
QF4	2 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)	
QF5	3 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)	
QF6	4 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)	
QF7	Air-cooled HVAC switch	480 Vac(US) 230 Vac(EU)	
QF8	Container power switch	230 Vac	
QF9	Fire controller switch	230 Vac	
QF10	UPS Switch	230 Vac	
QF11	BMS Box power switch	230 Vac	
QF12	24V Switch power switch	230 Vac	
QF13	Control power switch	230 Vac	
QF14	Ventilation switch	230 Vac	

Input voltage values for auxiliary power (0.25P)									
S/N:	Site specific number:	r: Date:							
Protector	Circuit Description	Voltage	remarks						
QF1	Auxiliary power main switch	480 Vac(US) 400 Vac(EU)							
QF2	Lightning arrester switch	480 Vac(US) 400 Vac(EU)							
QF3	1 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)							
QF4	2 # liquid-cooled chiller switch	480 Vac(US) 400 Vac(EU)							
QF5	Air cooled unit switch	480 Vac(US) 230 Vac(EU)							
QF6	Container power switch	230 Vac							
QF7	Fire controller switch	230 Vac							
QF8	UPS Switch	230 Vac							
QF9	BMS box power switch	230 Vac							
QF10	24V Switch power switch	230 Vac							
QF11	Control power switch	230 Vac							
QF12	Ventilation system switch	230 Vac							

Annex 4.1: Input voltage values for auxiliary power (0.25P)

Annex 5: Auxiliary equipment operation status

	Auxiliary equipment operation status									
S/N:	Site sp	ecific number:	Date	:						
No.	Debugging project	Debugging content	Inspection results	notes						
1	Are all types of circuit breakers normal?									
2	Does UPS operate normally?									
3	Is the air-cooled HVAC and chiller working properly?									
4	ls water immersion sensor status normal?									
5	Whether the fire protection system is normal?									
6	Is the local E-stop normal?									
7	Is the lighting normal?									

Annex 6: Fire Fighting System Debugging

		Fire Fighting System Debugging		
S/N:		Site specific number: Date:		
No.	Debugging project	Debugging content	Inspection results	Note
1	Smoke alarm	1. When there is a smoke or temperature signal, and there is no combustible gas (H_2) sensor alarm (both levels 2 and 3 are not present):		
2	Temperature alarm	After the alarm signal lasts for 2 sec, BMS reports the corresponding sensor fault level of EMS and handles it according to the system's level 3 severe fault. It outputs a dry contact signal, and EMS notifies PCS to stop (trip). BMS notifies PCS to stop, and notifies chillers and air-cooled HVAC to stop. The intake and ventilation system are not turned on, and the fire alarm bell and light alarm are turned on. BMS delays the opening of the 3 sec control relay and closes the utility circuit breaker. Recovery condition: The fault signal disappears and the fault is eliminated by clicking on the display control after manual maintenance.		
3	Combustible gas detector	When the combustible gas sensor triggers a Level 2 alarm, there is no smoke or temperature sensing alarm: After the alarm signal lasted for 5 sec, BMS reported a level 2 malfunction of the corresponding sensor to EMS and processed it as a level 3 serious malfunction of the system. The dry contact signal was output, and EMS notifies PCS to stop. BMS notifies PCS to stop, while also turning on the ventilation fans, turning on the fire alarm bell and sound and light alarm. BMS delayed the disconnection of the control relay for 3 seconds. Recovery condition: The fault signal disappears and the fault is eliminated by clicking on the display control after manual maintenance.		

ジン CanadianSolar

Annex 7: Joint Debugging Test Form

				Joint [Debugg	ing Test	Form				
S/N:	Site specific number: Date:										
number	Fau	lt name	BMS fault displ ay	PCS action	Dry contact action	String contactor action	Main DC circuit breaker action	EMS fault information display	Fault recovery action	ls it consistent	remarks
Individual voltage	Level 1	3.55V									
Too high	Level 2	3.6V									
	Level 3	3.7V									
Individual voltage	Level 1	2.9V									
Too low	Level 2	2.8V									
	Level 3	2.55V									
Individual voltage	Level 1	300mv									
Pressure difference (mV)	Level 2	400mv									
	Level 3	600mv									
High battery	Level 1	40									
charging and discharging	Level 2	45									
temperature (°C)	Level 3	50									
Low battery	Level 1	10									
charging and	Level 2	5									
discharging temperature (°C)	Level 3	0									
Battery temperature	Level 1	10									
Large difference (℃)	Level 2	15									
	Level 3	20									

	Level 1	5%				
Low SOC (1%)	Level 2	/				
	Level 3	/				
	Level 1	101%				
High SOC (1%)	Level 2	/				
	Level 3	/				
Total voltage overvoltage	Level 1	3.55*414				
High	Level 2	3.6*414				
	Level 3	3.7*414				
Total voltage overvoltage	Level 1	2.9*414				
Low	Level 2	2.8*414				
	Level 3	2.55*414				
Power plug-in	Level 1	90				
temperature over	Level 2	95				
temperature alarm (℃)	Level 3	100				
	Level 1	195				
Charging overcurrent (A)	Level 2	200				
	Level 3	205				
	Level 1	195				
Discharge overcurrent (A)	Level 2	200				
overcuirent (r)	Level 3	205				
Low insulation	Level 1	1000				
(ΚΩ)	Level 2	500				
	Level 3	100				
Display and control communication	Level 2	/				
fault						
BMU						
communication failure	Level 3	/				
Display and control: fire protection	Level 3	/				
Fault/Emergency Stop						

					 -		
Signal/electrical operation/fuse disconnection							
Individual voltage	Level 3	1					
Collection fault	Level 5	/					
Monomer temperature		Number of invalid					
Collection fault	Level 3	temperatures ≥ 4 or number of invalid temperature slaves ≥ 3					
The negative fuse of the BMS box is disconnected	Level 3	/					
The positive fuse of the BMS box is disconnected	Level 3	/					
The isolation switch of the BMS box is disconnected (after stringing, the detection is turned on, and the status before stringing is not determined)	Level 3	/					